你的浏览器版本过低,可能导致网站不能正常访问!为了您能正常使用网站功能,请使用这些浏览器。
chrome
Firefox
当前位置:易车> 问界M7> 问界M7扭矩> 摘要详情

问界M7HUAWEI DATS3.0动态自适应扭矩系统应运而生

问界M7HUAWEI DATS3.0动态自适应扭矩系统应运而生

摘要来自:《当华为开始做底盘,这事果然不简单》

【易车摘要频道】下列精选内容摘自于《当华为开始做底盘,这事果然不简单》的片段:

之后,路面预瞄(RSS)则是借助智驾感知系统的摄像头/激光雷达等设备,提前识别路面信息,并根据路面信息和车辆状态提前对减振器的阻尼特性进行调节的技术。通过实现对手减速带、坑洼、路面湿滑等路面特征的预判和识别,RSS可以进行更理想的悬架决策控制,从而提升车辆的驾乘舒适性。例如,通过预瞄提前感知前方减速带,主动进行ms级别的阻尼控制,可以有效减少过减速带的垂向冲击度约15%,结合扭矩自适应调节,整体过障冲击感下降31%。

因此综上所述,HUAWEI MFSS 1.0多模态融合感知系统通过其精确的车辆状态感知和路面预瞄技术,为车辆控制提供了可靠的数据依据,实现了更理想的悬架决策控制,从而显著提升了车辆的性能和驾乘体验。

HUAWEI DATS3.0动态自适应扭矩系统

相较于传统燃油车,新能源车在动力响应方面具有显著优势。这一优势主要得益于其先进的动力系统和电池技术,使得车辆能够更快地加速和响应驾驶者的操作。然而,在动能回收过程中,由于可能遇到的路面波动导致车轮腾空等问题,扭矩调整往往无法跟上响应速度,从而增加了车辆的晃动感,并可能加剧驾乘人员的不适。

为了解决这一问题,HUAWEI DATS3.0动态自适应扭矩系统应运而生。这一创新系统通过精确控制扭矩,可有效改善驾乘体验。DATS3.0包含三大子技术:扭矩矢量控制(TVC)、电子防滑控制(eASC)和协同拖曳扭矩控制(CDTC)。

TVC技术通过动态分配前后轴扭矩,调节车辆的横摆特性,提升转向灵敏度,改善驾控感受。它通过传感器对路面进行实时扫描,判断车辆是否出现转向不足的情况,通过制动系统和电子控制系统控制差速器齿轮,使引擎动力更合理地分配到两个驱动轮上。这一技术不仅可以提升车辆操控性,还能够在不同路况下提高行车安全性。

eASC技术能够动态识别颠簸/湿滑路面,智能调节扭矩,大幅提升行驶安全与平顺性。它通过路况输入和策略计算,实现对扭矩的精准调整,抑制轮端波动,有效收敛车辆的晃动和滑移。这一技术能够在不同路面情况下减少轮速波动、降低前向冲击感,特别是在湿滑路面下,能够降低打滑程度和冲击度,减少甩尾风险。

CDTC技术通过优化电制动扭矩与液压制动力矩协同,强化电机与液压制动的协同控制,显著提升行驶安全与体验一致性。它动态调节力矩分配,使电液协同,兼顾能耗与驾乘体验,实现更稳定、平顺的驾控。这一技术解决了电快液慢的问题,同时克服了动能回收过程中的电量和温度对刹车体验的影响,确保了驾驶的安全性和稳定性。

综上所述,HUAWEI DATS3.0动态自适应扭矩系统的三大子技术为新能源车在动力响应方面带来了显著的优势。通过精确控制扭矩和优化电制动扭矩与液压制动力矩协同,该系统不仅改善了驾乘体验,还提高了行驶安全性和稳定性。这些技术的成功应用将推动新能源车市场的发展,并为消费者提供更优质的驾驶体验。

HUAWEI xMotion智能车身协同控制系统

当讲到这个功能时,在我看来其对于目前纯电动车身上饱受非议的晕车感,简直就是一剂良药。

就目前来说,纯电动车在能量回收功能介入时,或者汽车通过减速带、坑洼路面等时,容易产生冲击大、前窜强、抖动大、横摆大的问题;而在加速驱动场景下,驶过桥梁接缝、对接路面等时,也可能产生加速弱、抖动大、横摆大等问题。这些问题的根本原因在于电机扭矩响应快,容易打滑;以及电制动扭矩大,低附时轮胎容易抱死。若未进行智能车身的协同控制,容易触发TCS或DTC等底盘功能,导致功能之间来回切换,产生冲击、扭矩波动等问题。

CopyRight © 2000-2023 BitAuto,All Rights Reserved. 版权所有 北京易车信息科技有限公司    购车咨询:4000-168-168 (周一至周日 9:00 – 21:00) 法定假日除外