你的浏览器版本过低,可能导致网站不能正常访问!为了您能正常使用网站功能,请使用这些浏览器。
chrome
Firefox
当前位置:易车> 蔚来ES8雷达摘要> 摘要详情

蔚来ES8雷达

蔚来ES8雷达

摘要来自:《蔚来ES8开L2撞人又撞车,为啥装24个传感器都躲不开?》

【易车摘要频道】下列精选内容摘自于《蔚来ES8开L2撞人又撞车,为啥装24个传感器都躲不开?》的片段:

作为一套引入了EyeQ4芯片的L2级系统,NOP系统的基础架构来自于视觉系统,即通过摄像头识别可行驶区域,并感知外界目标,在需要躲避的关键目标后,再引入毫米波雷达的感知数据来精确感知目标的速度和距离,进而算出驾驶决策。

这个架构换句话来说就是视觉是主传感器,然后再用毫米波雷达进行辅助。其中视觉传感器的权重高,毫米波雷达的权重低。

在这个背景下,蔚来的NOP的感知系统没有及时发现前车,就存在这样几种情况:

1、摄像头和毫米波雷达均在最后时刻前车

2、摄像头始终没有前车,毫米波雷达最后时刻前车(可排除)

3、毫米波雷达始终没有前车,摄像头最后时刻前车

4、毫米波雷达较早前车,摄像头在最后时刻才前车

5、摄像头较早前车,毫米波雷达在最后时刻前车(可排除)

考虑到NOP是一套L2级系统,并且是视觉为主传感器,所以如果摄像头较早了前车并持续追踪,理论上会在较早位置开始减速,所以情况5可以排除。

在以视觉为主的L2级自动驾驶系统中,一般情况下如果没有视觉感知的结果,L2系统几乎仅依靠毫米波雷达的目标进行反应。

在单雷达的AEB和ACC系统中,存在仅依靠雷达进行反应的做法。但考虑到的AEB系统根本不在工作范围,所以情况2也可以基本排除。

现在我们剩下了1、3、4三种情况。

还是那句话,因为视觉是主传感器并且权重更高,所以在情况4之下,即使毫米波雷达先了前车,系统也会暂时不行动,需要等待摄像头的感知结果融合后再采取行动。

看到这里,其实这起事故的技术原因已经很清楚了,最关键的是视觉没有及时发现目标。

同时毫米波雷达则显得有一些奇怪,它既可能较早就了目标,也可较晚,甚至还可能根本没有目标。

在下一部分,我们具体聊一聊事故中到底遇到了哪些感知难题,以及毫米波雷达为什么有这么多的可能性。

五、感知难点在哪?雨天+静止车辆+特殊位置


从行车记录仪视频画面来看,事故发生时这台ES8的雨刮器正在工作,说明当时正在下雨,挡风玻璃的雨滴会对车载前视摄像头产生一定的干扰,影响视觉识别能力。

不过需要注意,视频中雨刮器工作的频率不高,同时前风挡玻璃上的雨滴也比较少,可见当时应该下着小雨,对Mobileye的成熟算法来说,应该影响较小。

事故当天在下雨

几位自动驾驶从业者告诉车东西,视觉真正受影响的关键在于被撞五菱宏光的位置。

当时五菱宏光的车主下车在后方布置警示牌,同时五菱宏光又停在了车道线偏左、靠近隔离带的位置。

从ES8的视角来看,五菱宏光车主和车身之间有一定的重叠。

事故时,行人和前车有重叠

“视觉算法会依靠车轮、尾灯等特征点进行识别,行人跟车辆重叠在一起,很容易干扰识别算法。”一位车企的自动驾驶负责人这样向车东西解释道。

至于毫米波雷达,车东西询问了来自车企、Tier1和自动驾驶公司的相关专家后,也弄清楚了背后的多重复杂原因。

首先需要知道蔚来与博世的合作模式才能推测可能性。

据介绍,车企在选购博世的MMR第四代毫米波雷达时有两种模式,一是雷达直接给车企提供32个原始目标,并且告知是静止还是运动目标。

在这种模式下,需要车企自行结合视觉算法,来判断静止物体是汽车还是其他障碍物。

第二种模式下,博世会根据自己的经验和能力,基于毫米波雷达的RCS反射面积和不同帧之间反射点情况,从32个原始目标中筛选出功能安全目标——即车辆需要做出反应的目标。

“给原始目标的话,那么大一个五菱宏光不可能探测不到。”一位自动驾驶公司的专家向车东西说道,“但雷达并不知道那是个什么东西,需要视觉算法来进行分类才能做出反应。”

事故现场(图源@跑不动的小狐狸)

所以如果蔚来是直接拿原始数据,毫米波雷达几乎不可能感知不到前车,只能说蔚来的NOP系统没有合理使用雷达数据。

如果是第二种合作模式,博世的雷达自己会进行目标筛选,这里存在两种可能。

一种是博世的算法将这台五菱宏光当成不相干的静态物体过滤掉了。另一种可能是需要到很近的距离(30米左右),博世的算法才将前车识别为功能安全目标。

当然,如上一部分所言,因为毫米波雷达不是主传感器,所以不管毫米波雷达如何发挥,最终的结果都是发生了碰撞。

六、毫米波雷达为什么怕静止车辆?


从上一部分的结论来看,不管是还是经验丰富的博世,在碰到这种静止车辆场景时,毫米波雷达都存在较大的不确定性——即使雷达回波告知前方有目标,也很难对其准确分类,以确定行为策略。

这是毫米波雷达的探测原理,以及目前的技术现状共同决定的。

东南大学国家毫米波重点实验室毫米雷达技术专家、毫米波雷达公司隼眼科技CTO张慧向车东西解析了其中的多种原因。

从最底层的工作原理来说,毫米波雷达主要是依靠多普勒效应来感知移动目标。多普勒效应的特性是,动态对动态最容易感知、动态对静态较难感知、静态对静态极难感知。

这是因为如果前方车辆静止,目标信息容易和地杂波等掺杂在一起,需要一定的算法才能从中分辨出目标。而如果是一个行驶中的汽车,基于其多普勒信息,从而比较好探测到目标。

但目前像是博世、大陆等企业的雷达工程师们早就解决了从地杂波中识别静态物体的问题,为什么还是没法准确识别静止车辆呢?

这里就跟当前毫米波雷达的技术现状有关了——一般的毫米波雷达没有高度信息,同时空间分辨率不足。

没有高度信息,意味着雷达很难区分横穿马路的路牌和桥下的车;空间分辨率不足,意味着两个距离很近的物体,其回波会被混在一起,很难知道有几个目标。

道路中央的路牌

“这个场景中五菱宏光车身和护栏挨得很近,并且都是静止状态,这个时候雷达对于这两个目标的区分就得依靠角分辨率来实现了。在较远的距离雷达反射点混在一起,要到很近的距离才能区分护栏和车辆。”承泰科技CEO陈承文这样告诉车东西。

如果很难区分,把静态目标错误的识别为车辆,然后进行刹车会严重影响用户体验,甚至增加事故,所以一些雷达公司和自动驾驶公司会选择将静态物体(包括车)过滤掉,来减少误触发的情况。

不过据了解,博世、大陆、承泰科技等新老雷达企业,已经可以通过不同物体RCS反射面积的不同和不同帧之间的反射点的不同来区分路牌、立交桥和车辆。

“确实存在这样的技术,但是根据我们的实测,单纯用毫米波雷达区分静态物体和静态汽车的准确率并不算高。”一位车企自动驾驶负责人这样向车东西说道。

那么问题又来了,不同物体的RCS反射面积不同,比如汽车和立交桥的反射面积不同,为什么不能通过区分RCS来确定不同的物体呢?

“这是因为不同形状、材质的物体,RCS都不相同。而即使是同一个物体,不同角度的RCS也不相同,车载场景下变量太多暂时很难以简单通过RCS来确定一个物体的类型。”大学国家毫米波重点实验室毫米雷达技术专家、毫米波雷达公司隼眼科技CTO张慧说道。

CopyRight © 2000-2023 BitAuto,All Rights Reserved. 版权所有 北京易车信息科技有限公司    购车咨询:4000-168-168 (周一至周日 9:00 – 21:00) 法定假日除外